1前言
自1952年世界上第一次创建实用气液色谱法以来,在短短几十年间,气相色谱仪作为现代分析检测仪器的代表,已发展成为一个有相当生产规模的产业,并形成了具有相当丰富的检测技术知识的学科。通过研究气相色谱仪的发展规律,能给使用者有益的启迪,为有关专业人员的工作带来一定的帮助。
现以在中国得到广泛应用的岛津公司气相色谱仪系列为例,如1983年的Gc-7A、1985年的Gc-9A,1990年的Gc-14A、1995年的GC-17A等,就这些仪器的几个主要方面,即加热单元控制、炉温控制、流量控制、数据处理系统、检测器系统、系统控制等,来讲述气相色谱仪技术进步的发展轨迹,并预测今后气相色谱汉的发展趋势。
2气相色谱仪技术进步的发展轨迹2.1进样口及检测器的加热单元温度控制(Injectandde-cector temperature control)
Gc-7A和Gc-9A均采用一个完整的总加热块单元,3c-14A的进样口和检测器各共用一个总加热块单元,3c-17A改为每一个进样口和检测器都有独立的加热单元系统。
总加热块单元是指进样口、检测器全部或部分集中在一个大的加热块上,有一个加热棒,一个温度控制器,一个恒温块来控制温度。它的优点是结构简单、元器件少、成本低,由于储热值大,在到达温度后易于保持稳定。它的缺点是:加热块上的各部件的温度只能设为一致,而不能有所区别,限制了检测手段的运用;由于加热块体积大,升温降温速度缓慢,改变条件困难;升温时所有的部件都被加热,不用的部件也在升温降温过程时经受热疲劳损耗。
独立加热单元是指任何一个进样口和检测器都有独立的加热、控温、恒温装置。它的优点是任何一个部件都可设定为不同的温度,且由于加热块体积小、储热值低,升温降温速度都有很大的提高,能够提供进样口程序升温等功能,丰富了色谱技术的手段。它的缺点是各成一独立系统,对温度控制的技术要求高,且元件增多,成本相对较高。
采用总加热块单元的气相色谱仪一般采用“u”形柱(如Gc-7A、Gc-9A、GC-14A),因为各部件的位置被限定在一个加热块中,必须排列紧凑。采用独立加热单元的气相色谱仪一般采用圆形柱,因为它的进样口和检测器需要相隔一定距离,原因在于:各个独立加热单元的降温是通过周围空气冷却而实现,如进样口和检测器相隔太近,会互相影响散热效果。从总加热块单元到独立单元加热是一个大趋势。
2.2 炉温控制(Oven temperature control)
气相色谱仪炉温控制性能水平往往能体现这台仪器的层次和水准,炉温控制技术的衍变从柱温箱排热口的变化就可以看出来。Gc-7A没有柱温箱排热口,其升温降温速度慢得令人生畏,使操作者轻易不敢改变条件;GC-9A、GC-14A具有狭长缝型的排热口,使效果有了一定改善;Gc-17A进一步改为两个方形的排热口,降温效果令人满意。
在炉温控制的操作系统方面,Gc-7A采用机械拨盘方式,很不方便。从Gc-9A开始利用电子控制,采用键盘输入参数。可以说,岛津公司的气相色谱仪从Gc-9A才算是开始进入现代化。而Gc-17A是由工作站控制,可以很方便地进行程序控温。
2.3 气体流量控制(Flow control)Gc-7A、GC-9A.Gc-14A都采用了经典的机械式表阀控制,如压力表和转子流量计。
一般需要精确控制载气流量的部件使用转子流量计,只需粗略控制的部位使用压力表,如作为辅助燃烧气体的氢气和空气流量控制基本上都使用压力表。
机械表阀控制优点是:可靠,耐用、经济。它的缺点在于:每次开机时都要从零点慢慢地调高,关闭时再调回零位,由于每次调节都有不可避免存在人为的差异,每次的流量难以保持一致,因此在检测过程中不能改变流量。而电子压力控制采用电磁阀取代机械表阀,只需要输入一个数值即可找到预定的流量或压力,方便.准确、迅速,还可以提供程序升压手段,可谓是流量控制的一次革命。
电子控制流量克服了机械控制流量的缺陷,但也带来了新的问题:
(1)如果气源压力变化太大,容易因为强烈冲击而损坏,机械式表阀则不存在这个问题。
(2)一旦遭遇意外停电,电磁阀停止工作,停止供气,色谱柱在高温没有载气通过时极易损坏。
(3)从理论上来说,转子流量计是测载气流量最稳定准确的元件,很难产生偏差;而电子压力控制必竟是一个电子模拟机械过程,长期使用后有可能出现细微的偏差。
2.4 数据处理系统(Data analysis unit)
Gc-7A配置绘图仪,Gc-9A配置积分仪或不可储数据的数据处理机,GC-14A配置可存储数据的数据处理机,Gc-17A配置化学工作站进行数据处理。数据系统数据处理系统是气相色谱仪中进步最快,使用者得益最大的部分,它使操作仪器的工作越来越方便。在发明积分仪之前,测量色谱峰的峰面积只能手工用积分尺量算或剪纸称重,往往一个色谱峰就要花去半天的时间。现在,检测工作完成后可很快得到所有的谱数据。
从绘图仪到积分仪,再由数据处理机到化学工作站,其中的进步主要应归功于电子技术日新月异的发展。
2.5检测器系统(Detector)
在气相色谱仪的各个部件中,检测器相对较稳定,内部结构和组成并没有革命性的进展,检测性能提高也有限,但是稳定速度有了长足的进步,如Gc-17A的电子捕获检测器,它的稳定速度比Gc-14A快了10倍,降温效率更是达到了每10分钟降100摄氏度的惊人速度。
2.6主机系统控制部分(Total system control)在工作站出现以前,只能手工设置主机的各种运行参数,因此,开动一台仪器,需要进行许多琐碎的设定与调整步骤,开闭许多开关,调节许多旋钮。对设备不是很熟悉的人员经常会发生错误。
在运用工作站之后,使用者可以将不同实验的各种仪器参数、运行程序输入计算机内,下次直接调用即可工作,完成从开机、检测、处理结果等各个步骤,再也不需对仪器各个部件的参数进行逐项输入和确定,使操作更加简便。岛津公司的气相色谱仪系列在GC-17A后普遍使用了工作站对仪器进行直接控制。