关键词: 碱性成纤维细胞生长因子(bFGF) 神经 再生
1975年Gospodarowicz首先报道运用理化方法从牛的大脑和垂体中分离纯化出碱性成纤维细胞生长因子(Basic Fibroblast Growth Factor,bFGF )。80年代,bFGF的氨基酸序列得到澄清。90年代,国内外相继运用基因工程方法成功获得重组bFGF,有力推动了关于bFGF的研究。系列研究证实,bFGF能刺激和调节血管内皮细胞、上皮细胞、成肌细胞、成骨细胞和神经胶质细胞等多种起源于中胚层、神经外胚层的细胞分化增殖,在胚胎发育、组织愈合中起重要作用。神经方面,关于bFGF的研究集中在中枢神经,发现其神经活性广泛,能保护神经元,促进突起增生,提示在周围神经再生方面的研究意义。现参考近年来bFGF与神经再生的相关文献作一综述。
一、内源性bFGF正常情况下的表达和神经损伤后的变化
(一)中枢神经:正常情况下,内源性bFGF以微量分布于脑、垂体和下丘脑等器官,已证实星形胶质细胞、垂体滤泡及部分神经细胞能分泌bFGF,在海马皮质、中脑、纹状体和小脑颗粒细胞均有其受体。神经损伤后,早期就能观察到内源性bFGF表达增多,是神经损伤后早期反应之一。
叶诸榕用原代培养的大鼠大脑星形胶质细胞作成机械损伤模型,观察发现bFGF在损伤后2小时开始表达,12小时达高峰,2天后开始回落,星形胶质细胞胞体肥大,突起粗大。崔建忠运用Northern杂交、组织学方法动态观察大鼠颅脑弥漫性损伤后bFGF的基因表达和组织学改变,结果发现轻度损伤后12小时,重度损伤后4小时,bFGF基因表达增加,均于第3天达到高峰。Grothe〔1〕研究脊髓神经节bFGF及其Ⅰ型受体(FGFR-1)的表达时发现,正常情况下,bFGF和FGFR-1的mRNA在脊神经节均有表达,原位杂交显示星形胶质细胞产生bFGF,而感觉神经元表达FGFR-1,提示旁分泌作用;坐骨神经损伤后,L4~6感觉神经元bFGF的表达在1天内即上调,7天达高峰,28天后恢复,FGFR-1的变化则不明显。
(二)周围神经:Grothe〔1〕和Meisinger〔2〕1997年报道了bFGF及其受体在周围神经的表达和损伤后变化的研究结果,而此前该领域未见报道。该研究发现,正常情况下,大鼠坐骨神经FGFR-1 mRNA表达高于bFGF mRNA。坐骨神经损伤后,FGFR-1和bFGF的mRNA在损伤远、近端均于不同的时相点上调,并有时间依赖性;bFGF的表达具有自身正反馈特点,且不影响FGFR-1。这一实验说明,与在中枢神经一致,内源性bFGF表达增多同样是外周神经损伤后的早期反应。
神经损伤后bFGF表达上调的意义是什么?不少学者将bFGF运用于神经细胞培养和神经损伤模型,发现bFGF具有广泛的促神经再生作用,提示bFGF表达增多是神经损伤后的修复反应,且可能具有始动意义。
二、外源性bFGF促进神经再生
(一)中枢神经
(1)离体试验:端礼荣在原代培养的大鼠胚胎中脑神经细胞中加入bFGF,观察发现细胞微团集落形成率明显增加,不同剂量的bFGF表现量效关系,图像分析见神经细胞突起增多,连接丰富呈网状。Miyagawa运用bFGF于原代培养的海马神经元轴突损伤模型,观察发现实验组较对照组轴突增生、突起增多。Himmelseher〔3〕进一步研究了不同浓度的bFGF对如上模型的作用,结果未用bFGF的对照组神经元存活65%,运用不同剂量bFGF的试验组神经元变性均减少,10 mg/L组存活神经元达85%,神经突起亦增多、增长。
由上述试验可见,bFGF能促进培养的神经细胞增生,神经细胞损伤后运用bFGF,变性死亡减少,神经突起增生,说明bFGF在体外具有促进、保护神经细胞的作用。Malgrane〔4〕研究大鼠背根神经节神经元对神经毒性药物的反应时发现:bFGF不但能刺激轴突再生,而且提前24小时运用可以显著减少神经毒性物质的作用,这从另一个角度说明了bFGF对神经细胞的保护、维持作用。
(2)在体实验:bFGF保护中枢神经细胞、促进突起增长的效应在体内亦得到证实。汪春风运用bFGF治疗成年大鼠大脑皮质损伤模型,于损伤术中和术后分次给予bFGF,术后40天取材作体视学分析,结果实验组存活神经元显著多于对照组。Miyamoto〔5〕分别运用bFGF、神经生长因子(Nerve Growth Factor,NGF)于大鼠大脑单侧伞穹窿部切断模型,发现bFGF和NGF均能刺激海马乙酰胆碱酯酶阳性纤维生长,NGF组仅为细纤维而bFGF组粗、细纤维均有。
Nakahara〔6〕将经基因修饰后可分泌bFGF的成纤维细胞移植于大鼠脊髓损伤模型中央灰质处,发现2周至6月后,背侧区的感觉神经、去甲肾上腺素能神经均有纤维长入移植细胞,提示bFGF具有诱神经活性。
(二)周围神经:bFGF及其受体在周围神经的表达尚不清楚,Aebischer、Laquerriere即已尝试运用填充bFGF的小管套接坐骨神经缺损,术后4周行组织学、电生理检查,发现实验组有神经纤维生长,而对照组没有。虽然有神经纤维生长并不就说明神经成功再生,但已提示了bFGF直接或间接促进轴突生长的可能。故bFGF的作用效能、分子生物学作用机制,值得深入研究。
雪旺细胞(Schwanns cell,SC)分裂增殖是周围神经再生的重要环节,增殖的SC吞噬变性产物,形成索带引导再生轴突长向远侧,并分泌多种神经营养、趋化因子,使轴突迅速、准确生长。体外培养的SC移植到神经再生室中能促进神经生长已为试验证实。在培养SC的工作中,Rater、Dong、龚炎培均发现bFGF能促进SC分裂增殖,龚氏运用流式细胞计观察FGF、NGF、纤连蛋白和神经再生条件液对SC体外细胞动力学的影响,发现8天后FGF组SC增殖最显著,达8倍以上,而NGF对SC分裂增殖不起作用。虽然SC超常增殖的意义学者们尚无定论,但对SC增殖期已过的陈旧性神经损伤,促进SC增殖对神经再生很可能有重要意义。因此,应进一步验证bFGF能否促进在体SC增殖及增殖后的继发效应。
血管发生对神经损伤后创口愈合、神经再生的意义重大,然其初始介质仍未完全阐明。Baffour〔7〕在兔下肢急性缺血模型运用bFGF,发现治疗组肌肉活力、肌内血氧含量、每平方毫米毛细血管数和每肌纤维毛细血管数均明显高于对照组。提示bFGF能促进微循环重建。Nissen〔8〕收集术后创口内液体分析发现,血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)浓度术毕无变化,后7天逐渐升高,而bFGF浓度术毕即升达高峰,3天后降至血浆浓度;各时相点创室内液均对内皮细胞有趋化性,能引发神经、血管反应,术毕采取的创室内液,经VEGF的抗体中和后仍具趋化性和促血管发生能力,术后3至6天采取的创室内液,经VEGF的抗体中和后趋化性和促血管发生能力显著降低。提示bFGF是血管发生的始动介质,VEGF则起着继发而持续的作用。Seghzzi研究小鼠角膜血管发生时,发现形成毛细血管的内皮细胞表达VEGF mRNA和蛋白,外源性bFGF或上调内源性bFGF能增加VEGF的表达。说明VEGF的表达受bFGF调控,运用bFGF能促进血管发生,改善血供。而血供的改善显然有利于创口愈合和神经再生。
综上所述,bFGF促进神经再生的作用是多方面的:(1)保护神经元;(2)促进轴突再生;(3)促进SC增殖;(4)促进血管发生,改善血供微循环等。借助分子生物学、免疫学等的新技术,各方面的研究还在不断深入。但另一方面,强调神经营养性之外,神经支配的效应器应如何减缓退变?有关效应器营养性的研究仍不多见,值得注意,因为效应器不可逆性退变,同为神经损伤、尤其陈旧性损伤修复困难的主要障碍。
三、bFGF与周围神经再生
近10余年来,新兴的、跨学科的神经生物学发展迅速,对周围神经再生的研究从细胞、亚细胞发展到分子水平,提出了一些新的概念和理论。认为神经不同于一般组织,神经细胞胞体位于中枢,而轴突延伸很长,组成周围神经,神经损伤的性质是细胞损伤。损伤后不仅轴突断裂,还引起近端神经元坏死,远段神经变性,失神经支配的感觉、运动效应器退变萎缩,因此神经损伤不仅是损伤局部一个水平有病变,还包括神经元、效应器,是三个水平的病变,只注重损伤局部的处理是片面的。成功的神经再生要求:(1)保护近端神经元;(2)再生轴突快速、准确长向远段;(3)效应器未发生不可逆性退变;(4)再生轴突与效应器形成功能性突触。SC、基底膜和神经营养因子(Neurotrophic Factor,NTF)是发挥以上作用的物质要素。NTF是指能保护神经元,和/或促进轴突再生的物质,已提出NGF、睫状神经节营养因子(CNTF)、脑源性营养因子(BDNF)、bFGF等20余种。至今,NGF由于:(1)体内有特异受体;(2)体内外作用均有效;(3)制备的抗体能阻断活性,唯一得到证实,而bFGF及其受体在周围神经的表达及损伤后变化的研究正在开展,其在体运用的效能、抗体阻断的实验亦待进行,所以是一种潜在的、未完全证实的NTF,但在试验中已经展现了较NGF促神经再生活性广泛的特点,除与NGF一样能保护神经元、促进轴突生长外,还能刺激SC增殖,促进毛细血管形成改善损伤神经及周围组织的血供,因而又是很有潜力的,预计随着以上两方面研究的进展,bFGF作为一种NTF的性质将很快澄清,为神经损伤患者带来新的希望。
参考文献 [1] Grothe C,Meisinger C,Hertenstein A,et al. Expression of fibroblast growth factor-2 and fibroblast growth factor receptor-1 mRNAs in spinal ganglial and sciatic nerve:regulation after peripheral lession. Neurosci, 1997,76:123-135.
[2] Meisinger C,Grothe C.Differential regulation of fibroblast growth factor (FGF)-2 and FGF receptor mRNA and FGF-2 isoforms in spinal ganglial and sciatic nerve after peripheral nerve lesion. J Neurochem, 1997,68:1150-1158.
[3] Himmelseher S, Pfenninger E, Geo-rgieff M. Effect of basic fibroblast growth factor on hippocampal neurons after axonal injury. J Trauma, 1997,42:659-664.
[4] Malgrane B,Delree P, Rigo JM, et al. Imge analysis of neuritic regeneration by adult rat dorsal root ganglion neurons in culture. J Neurosci Methods, 1994, 53:111-122.
[5] Miyamoto O, Itano T, Fujisawa M, et al. Exogenous basic fibroblast growth factor and nerve growth factor enhance sprouting of acetylcholinesterase positive fibers in denervated rat hippocampus. Acta Med Okayama,1993,47:139-144.
[6] Nakahara Y, Gage FH, TuszynskiMH.Grafts of fibroblast genetically modified to secrete NGF, BDNF, NT-3,or basic FGF elicit differential responses in the adult spinal cord. Cell Transplant,1996,5:191-204.
[7] Baffour R,Berman J, Farb JL, et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant bFGF in a rabbit model of acute lower limb ischemia:dose response effect of bFGF. J Vasc Surg, 1992,16:181-193.
[8] Nissen NN,Polverini PJ,Koch AE, et al. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol, 1998,152:1445-1452.